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Abstract

A set S ¢ E is called an edge-to-vertex geodetic set of G if every vertex of G is either
incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum
cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of
cardinality ge/(G) is called an edge-to-vertex geodetic basis of G. In this paper we study the
edge-to-vertex geodetic number of some path related graphs called snake graphs which are
obtained from the path P, by replacing its edges by cycles Ca.
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1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by p and q respectively. We consider connected
graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 5]. For
vertices u and v in a connected graph G, the distance d (u, v) is the length of a shortest u —v path
in G. A u —v path of length d (u, v) is called a u —v geodesic. The geodetic number g(G) of G is
the minimum order of a geodetic set and any geodetic set of order g(G) is called a geodetic basis
of G. The geodetic number of a graph was studied in [1, 2, 3,4]. For subsets A and B of V(G), the
distance d(A, B) is defined as d(A, B) = min{d(x, y) : x € A, y € B}. A u — v path of length
d (A, B) is called an A — B geodesic joining the sets A, B where u € A and v € B. A vertex X is
said to lie on an A — B geodesic if x is a vertex of an A — B geodesic. For A = {u, v} and B =
{z, w} with uv and zw edges, we write an A — B geodesic as uv — zw geodesic and d(A, B) as

d(uv, zw). A set S ¢ E is called an edge-to-vertex geodetic set if every vertex of G is either
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incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex
geodetic number ge'(G) of G is the minimum cardinality of its edge-to-vertex geodetic sets and
any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of
G. The edge-to-vertex geodetic number of a graph was introduced by Santhakumaran and John
and the same was further studied by various authors in [6]. A vertex v is an extreme vertex of a
graph G if the subgraph induced by its neighbors is complete. A vertex v is an end vertex of a
graph G if d(v)=1. A cut-vertex (cut-edge) of a graph G is a vertex (edge) whose removal
increases the number of components. Two vertices u and v of G are antipodal if d(u, v) = diam G
or d(G). For any real number n, [n | denotes the smallest integer not less than n and |n] denotes
the greatest integer not greater than n. The triangular snake Ty is obtained from the path P, by
replacing every edge of a path by a triangle Cs. The double triangular snake DT, consists of two
triangular snakes that have a common path. The alternate triangular snake AT is obtained from a
path P, by replacing every alternate edge of a path P, by a cycle Cs. The double alternate
triangular snake DA(Tn) consists of two alternate triangular snakes which have a common path.
The quadrilateral snake Qn is obtained from a path P, by replacing every edge of a path P, by a
cycle C4.Throughout this paper G denotes a connected graph with at least three vertices. The
following theorems are used in sequel.

Theorem 1.1. [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex
geodetic set contains at least one extreme edge that is incident with v.

Theorem 1.2. [6] Let G be a connected graph and S be a ge,-Set of G. Then no cut edge of G
which is not an end-edge of G belongs to S.

Theorem 1.3. [6] Every end-edge of a connected graph G belongs to every edge-to-vertex
geodetic set of G.

2. Main Results

Theorem 2.1. For the triangular snake G= T, gev(G) = n-1.

Proof. Consider the path Py : vi, Vo, V3, Va..., Vo1, Va. Let the triangular snake Ty in Figure 2.1 be
obtained by replacing each edge vivi.1 of Py to triangle Cs by adding the new vertices ui, uy, us,
Us..., Un1. The triangular snake Tn consists of 2n-1 vertices, 3(n-1) edges and n-1 triangles.
Moreover, it consists of 2n extreme edges. (Each C;,i=2,3... n-2 has two extreme edges and C
and C, have three extreme edges) By Theorem 1.1, every edge-to-vertex geodetic set contains at

least one extreme edge from each Cs we have gey(G) = n-1. Suppose that ge,(G) = n. Then there



exists a minimum edge-to-vertex geodetic set S such that |S| = n. Without loss of generality, let us
take S = {uiv1, UaVo, UsVs, ... , UnaVna, UnaVa}. Clearly S is an edge-to-vertex geodetic set of G. But
S-{unavn-1} is an edge-to-vertex geodetic set of G and is contained in S. So S is not a minimum edge-

to-vertex geodetic set. Therefore, gev(G) < n-1.Hence gev(G) = n-1.
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Figure 2.1

Theorem 2.2. For the double triangular snake G= DTh, gev(G) = 2(n-1).

Proof. Consider the path Pn: vi, V2, V3, Va..., Va1, Va. The doublé triangular snake DT, in Figure 2.2 is
obtained by replacing each edge vi vi:1 of Py to two triangle’s Cs in which the path is common for
both the triangles and the new vertices are us, Uz, Uz, Ua..., Un.1 and Wi, Wz, W3, Wa..., Wn-1 . The doublé
triangular snake consists of 3n-2 vertices, 5(n-1) edges and 2(n-1) triangles. Clearly DT, has
4(n-1) extreme edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one
extreme edge from each Cz we have gey(G) = 2(n-1). Let S ={uivi, Vawi, UaVa, VaWa, UaVa, VaWs,...,
Un-1Vn, VaWn-1} be a subset of the set of all extreme edges of G. It is easily observe that S is a
minimum edge-to-vertex geodetic set of G, and |S| = 2(n — 1). Therefore, gev(G) < 2(n-1). Hence
gev(G) = 2(n-1).
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Figure 2.2



Remark 2.3. For the above two theorems, we can see that the edge-to-vertex geodetic number of
Tn and DT, depends on the number of triangles in the corresponding snake graph.
Theorem 2.4. For an alternate triangular snake G = ATy,
0oi(G) = % if the path P, is even
¥ E] if the path P, is odd

Proof. Case (i) niseven and n > 4.
Consider the path Pn: vi, V2, V3, Va..., Va1, Vo Where n is even. The alternate triangular snake

ATy, in Figure 2.3 is obtained by replacing the alternate edges of P, by triangle Cs. Clearly AT,
contains % triangles in which us, uz, us, Ua..., un;, are the new vértices. Note that AT, has n extreme
edges and %— 1 cut edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least
one extreme edge from each Cs and hence gey(G) = g Also by Theorem 1.2, no cut edge of G

which is not an end-edge of G belongs to every edge-to-vertex geodetic set of G. Let S ={uivs,

UaVa, UsVg, ..., unVn}. Clearly S is a subset of the set of all extreme edges of G = AT. Since every vertices
2

of AT are either in S or lies in a geodesic joining of some pair of edges of AT, we get S is an edge-to-

vertex geodetic set of G = ATn. Also it is seen that S is a minimum edge-to-vertex geodetic set of

ATh. Therefore ge(G) = |S| = %
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Alternate Triangular snake AT,
Figure 2.3

Case (ii) nisodd and n > 3.
In this case the alternate triangular snake AT, in Figure 2.4 contains an end edge, "2;1 triangles
and n7_3 cut edges. It is easily observe that AT, has n extreme edges. By Theorem 1.3 & 1.1,

Every edge-to-vertex geodetic set S of AT, contains an end edge and at least "T_l extreme edges



+1 .
"2 . Consider the set S = {uwvs, UxVa, UsVe, ..., Un-1 Vp_q, VoaVn }.

2

and hence ge(G) > nT_l +1=

Clearly S is a minimum edge-to-vertex geodetic set of ATn. Hence gev(G) = "2“ = E]
Un-1
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Figure 2.4

REFERENCES
[1] F.Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.

[2] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the Geodetic Number of a
graph, Scientia A2 (1988) 17-22.

[3] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in Graphs, Discussiones Mathematicae
Graph Theory 20(2000)129 — 138.

[4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks
Vol.39 (1), (2002) 1-6.

[5] F. Harary, Graph Theory, Addision- Wesley(1969).

[6] J.John, A.Vijayan, S.Sujitha, The upper edge-to-vertex geodetic number of a graph,
International Journal of Mathematics Archive 3(4), 2012, 1423-1428.



	The Edge-to-vertex Geodetic Number of some snake Graphs
	S.Sujitha

