
 The Edge-to-vertex Geodetic Number of some snake Graphs  

S.Sujitha 

Department of Mathematics 

Holy Cross College (Autonomous) 

Nagercoil-629004, India. 

sujivenkit@gmail.com 

Abstract 

   A set S  E is called an edge-to-vertex geodetic set of G if every vertex of G is either 

incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum 

cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of 

cardinality gev(G) is called an edge-to-vertex geodetic basis of G. In this paper we study the 

edge-to-vertex geodetic number of some path related graphs called snake graphs which are 

obtained from the path Pn by replacing its edges by cycles C3. 
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1.  Introduction 

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple 

edges. The order and size of G are denoted by p and q respectively. We consider connected 

graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 5]. For 

vertices u and v in a connected graph G, the distance d (u, v) is the length of a shortest u  v path 

in G. A u  v path of length d (u, v) is called a u  v geodesic. The geodetic number g(G) of G is 

the minimum order of a geodetic set and any geodetic set of order g(G) is called a geodetic basis 

of G. The geodetic number of a graph was studied in [1, 2, 3,4].  For subsets A and B of V(G), the 

distance d(A, B) is defined as d(A, B) = min{d(x, y) : x  A, y  B}. A u  v path of length          

d (A, B) is called an A  B geodesic joining the sets A, B where u  A and v  B. A vertex x is 

said to lie on an A  B geodesic if x is a vertex of an A  B geodesic. For A = {u, v} and B =     

{z, w} with uv and zw edges, we write an A  B geodesic as uv  zw geodesic and d(A, B) as 

d(uv, zw). A set S  E is called an edge-to-vertex geodetic set if every vertex of G is either 
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incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex 

geodetic number gev(G) of G is the minimum cardinality of its edge-to-vertex geodetic sets and 

any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of 

G. The edge-to-vertex geodetic number of a graph was introduced by Santhakumaran and John 

and the same was further studied by various authors in [6]. A vertex v is an extreme vertex of a 

graph G if the subgraph induced by its neighbors is complete. A vertex v is an end vertex of a 

graph G if d(v)=1. A cut-vertex (cut-edge) of a graph G is a vertex (edge) whose removal 

increases the number of components. Two vertices u and v of G are antipodal if d(u, v) = diam G 

or d(G). For any real number n, ⌈𝑛 ⌉ denotes the smallest integer not less than n and  ⌊𝑛⌋ denotes 

the greatest integer not greater than n. The triangular snake Tn is obtained from the path Pn by 

replacing every edge of a path by a triangle C3. The double triangular snake DTn consists of two 

triangular snakes that have a common path. The alternate triangular snake ATn is obtained from a 

path Pn by replacing every alternate edge of a path Pn by a cycle C3. The double alternate 

triangular snake DA(Tn) consists of two alternate triangular snakes which have a common path. 

The quadrilateral snake Qn is obtained from a path Pn by replacing every edge of a path Pn by a 

cycle C4.Throughout this paper G denotes a connected graph with at least three vertices.  The 

following theorems are used in sequel. 

Theorem 1.1. [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex 

geodetic set contains at least one extreme edge that is incident with v. 

Theorem 1.2. [6] Let G be a connected graph and S be a gev-set of G. Then no cut edge of G 

which is not an end-edge of G belongs to S. 

Theorem 1.3. [6] Every end-edge of a connected graph G belongs to every edge-to-vertex 

geodetic set of G. 

2. Main Results 

Theorem 2.1. For the triangular snake G= Tn, gev(G) = n-1. 

Proof. Consider the path Pn : v1, v2, v3, v4…, vn-1, vn. Let the triangular snake Tn in Figure 2.1 be 

obtained by replacing each edge vivi+1 of Pn to triangle C3 by adding the new vertices u1, u2, u3, 

u4…, un-1. The triangular snake Tn consists of 2n-1 vertices, 3(n-1) edges and n-1 triangles. 

Moreover, it consists of 2n extreme edges. (Each Ci,,i=2,3… n-2 has two extreme edges and C1 

and Cn  have three extreme edges) By Theorem 1.1, every edge-to-vertex geodetic set contains at 

least one extreme edge from each C3, we have gev(G) ≥ n-1. Suppose that gev(G) = n. Then there 



exists a mínimum edge-to-vertex geodetic set S such that |𝑆| = 𝑛. Without  loss of generality, let us 

take S = {u1v1, u2v2, u3v3, ... , un-1vn-1, un-1vn}. Clearly S is an edge-to-vertex geodetic set of G. But            

S-{un-1vn-1} is an edge-to-vertex geodetic set of G and is contained in S. So S is not a minimum edge-

to-vertex geodetic set. Therefore, gev(G) ≤ n-1.Hence gev(G) = n-1. 

Theorem 2.2. For the double triangular snake G= DTn, gev(G) = 2(n-1). 

Proof. Consider the path Pn : v1, v2, v3, v4…, vn-1, vn. The doublé triangular snake DTn in Figure 2.2 is 

obtained by replacing each edge vi vi+1 of Pn to two triangle’s C3 in which the path is common for 

both the triangles and the new vertices are u1, u2, u3, u4…, un-1 and w1, w2, w3, w4…, wn-1 .  The doublé 

triangular snake consists of 3n-2 vertices, 5(n-1) edges and 2(n-1) triangles. Clearly DTn has     

4(n-1) extreme edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one 

extreme edge from each C3, we have gev(G) ≥ 2(n-1). Let S ={u1v1, v1w1, u2v3, v3w2, u3v4, v4w3,…,   

un-1vn, vnwn-1} be a subset of the set of all extreme edges of G. It is easily observe that S is a 

minimum edge-to-vertex geodetic set of G, and  |𝑆| = 2(𝑛 − 1). Therefore, gev(G) ≤ 2(n-1). Hence 

gev(G) = 2(n-1). 

 

v1 v2 v3 v4 v5 vn vn-1 

u1 u2 u3 u4 un-2 un-1 

         Double Triangular snake DTn 

                       Figure 2.2 

w1 w2 w3 w4 wn-2 wn-1 

v1 v2 v3 v4 v5 vn vn-1 

u1 u2 u3 u4 un-2 un-1 

         Triangular snake Tn 

                Figure 2.1 



Remark 2.3. For the above two theorems, we can see that the edge-to-vertex geodetic number of 

Tn and DTn depends on the number of triangles in the corresponding snake graph. 

Theorem 2.4. For an alternate triangular snake G = ATn,  

                           gev(G) =  {

𝑛

2
 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

⌈
𝑛

2
⌉ 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃𝑛  𝑖𝑠 𝑜𝑑𝑑

 

Proof. Case (i) n is even and n ≥ 4. 

            Consider the path Pn : v1, v2, v3, v4…, vn-1, vn where n is even. The alternate triangular snake 

ATn, in Figure 2.3 is obtained by replacing the alternate edges of Pn by triangle C3. Clearly ATn 

contains 
𝑛

2
 triangles in which u1, u2, u3, u4…, 𝑢𝑛

2 ⁄  are the new vértices. Note that ATn has n extreme 

edges and 
𝑛

2
− 1 cut edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least 

one extreme edge from each C3, and hence gev(G) ≥ 
𝑛

2
. Also by Theorem 1.2, no cut edge of G 

which is not an end-edge of G belongs to every edge-to-vertex geodetic set of G. Let S ={u1v1, 

u2v4, u3v6, …, 𝑢𝑛

2
vn}. Clearly S is a subset of the set of all extreme edges of G = ATn. Since every vertices 

of ATn are either in S or lies in a geodesic joining of some pair of edges of ATn, we get S is an edge-to-

vertex geodetic set of G = ATn. Also it is seen that S is a minimum edge-to-vertex geodetic set of 

ATn. Therefore gev(G) = |𝑆| = 
𝑛

2
. 

 

 

Case (ii) n is odd and n ≥ 3. 

In this case the alternate triangular snake ATn in Figure 2.4 contains an end edge, 
𝑛−1

2
 triangles 

and 
𝑛−3

2
 cut edges. It is easily observe that ATn has n extreme edges. By Theorem 1.3 & 1.1, 

Every edge-to-vertex geodetic set S of ATn contains an end edge and at least 
𝑛−1

2
 extreme edges 

v1 v2 v3 v4 v5 vn vn-1 

u1 u2 𝑢𝑛
2

 

         Alternate Triangular snake ATn 

                       Figure 2.3 



and hence gev(G) ≥ 
𝑛−1

2
+ 1 =  

   𝑛+1

2
. Consider the set S = {u1v1, u2v4, u3v6, …, 𝑢𝑛−1

2

 𝑣𝑛−1, vn-1vn }. 

Clearly S is a minimum edge-to-vertex geodetic set of ATn. Hence gev(G) =  
   𝑛+1

2
 = ⌈

𝑛

2
⌉. 
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         Alternate triangular snake ATn 

                         Figure 2.4 
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