The Edge-to-vertex Geodetic Number of some snake Graphs

S.Sujitha

Department of Mathematics
Holy Cross College (Autonomous)
Nagercoil-629004, India.
sujivenkit@gmail.com

Abstract

A set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an edge-to-vertex geodetic basis of G. In this paper we study the edge-to-vertex geodetic number of some path related graphs called snake graphs which are obtained from the path P_n by replacing its edges by cycles C_3 .

Keywords: geodesic, edge-to-vertex geodetic set, edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by P and Q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 5]. For vertices P0 and P1 in P2 is called a graph P3, the distance P4 P6 is the length of a shortest P7 path in P8. A P9 path of length P9 is called a P9 path of length P9 is called a P9 geodetic set and any geodetic set of order P9 is called a geodetic basis of P9. The geodetic number of a graph was studied in P1, 2, 3,4]. For subsets P9 and P9 is defined as P9 is defined as P9 and P9 is called an P9 geodesic joining the sets P9. A P9 where P9 and P9 geodesic if P9 is a vertex of an P9 geodesic. For P9 geodesic and P9 geodesic as P9 geodesic as P9 and P9 geodesic and P9 geodesic as P9 geodesic as P9 geodesic and P9 geodesic and P9 geodesic as P9 geodesic and P9

incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an edge-to-vertex geodetic basis of G. The edge-to-vertex geodetic number of a graph was introduced by Santhakumaran and John and the same was further studied by various authors in [6]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. A vertex v is an end vertex of a graph G if d(v)=1. A cut-vertex (cut-edge) of a graph G is a vertex (edge) whose removal increases the number of components. Two vertices u and v of G are antipodal if d(u, v) = diam Gor d(G). For any real number n, [n] denotes the smallest integer not less than n and [n] denotes the greatest integer not greater than n. The triangular snake T_n is obtained from the path P_n by replacing every edge of a path by a triangle C_3 . The double triangular snake DT_n consists of two triangular snakes that have a common path. The alternate triangular snake AT_n is obtained from a path P_n by replacing every alternate edge of a path P_n by a cycle C_3 . The double alternate triangular snake $DA(T_n)$ consists of two alternate triangular snakes which have a common path. The quadrilateral snake Q_n is obtained from a path P_n by replacing every edge of a path P_n by a cycle C_4 . Throughout this paper G denotes a connected graph with at least three vertices. The following theorems are used in sequel.

Theorem 1.1. [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.

Theorem 1.2. [6] Let G be a connected graph and S be a g_{ev} -set of G. Then no cut edge of G which is not an end-edge of G belongs to S.

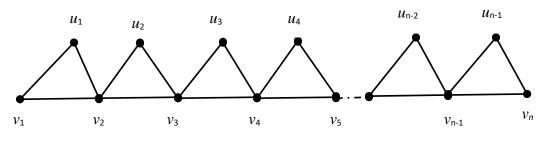
Theorem 1.3. [6] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G.

2. Main Results

Theorem 2.1. For the triangular snake $G = T_n$, $g_{ev}(G) = n-1$.

Proof. Consider the path P_n : v_1 , v_2 , v_3 , v_4 ..., v_{n-1} , v_n . Let the triangular snake T_n in Figure 2.1 be obtained by replacing each edge v_iv_{i+1} of P_n to triangle C_3 by adding the new vertices u_1 , u_2 , u_3 , u_4 ..., u_{n-1} . The triangular snake T_n consists of 2n-1 vertices, 3(n-1) edges and n-1 triangles. Moreover, it consists of 2n extreme edges. (Each C_i , i=2,3... n-2 has two extreme edges and C_1 and C_n have three extreme edges) By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_3 , we have $g_{ev}(G) \ge n-1$. Suppose that $g_{ev}(G) = n$. Then there

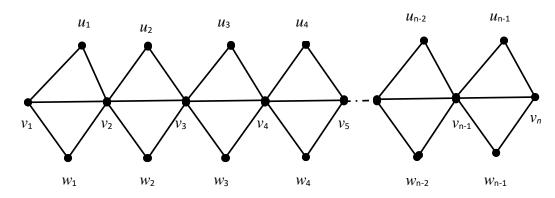
exists a mínimum edge-to-vertex geodetic set S such that |S| = n. Without loss of generality, let us take $S = \{u_1v_1, u_2v_2, u_3v_3, ..., u_{n-1}v_{n-1}, u_{n-1}v_n\}$. Clearly S is an edge-to-vertex geodetic set of G. But $S-\{u_{n-1}v_{n-1}\}$ is an edge-to-vertex geodetic set of G and is contained in S. So S is not a minimum edge-to-vertex geodetic set. Therefore, $g_{ev}(G) \le n-1$. Hence $g_{ev}(G) = n-1$.



Triangular snake T_n Figure 2.1

Theorem 2.2. For the double triangular snake $G = DT_n$, $g_{ev}(G) = 2(n-1)$.

Proof. Consider the path P_n : v_1 , v_2 , v_3 , v_4 ..., v_{n-1} , v_n . The doublé triangular snake DT_n in Figure 2.2 is obtained by replacing each edge v_i v_{i+1} of P_n to two triangle's C_3 in which the path is common for both the triangles and the new vertices are u_1 , u_2 , u_3 , u_4 ..., u_{n-1} and w_1 , w_2 , w_3 , w_4 ..., w_{n-1} . The doublé triangular snake consists of 3n-2 vertices, 5(n-1) edges and 2(n-1) triangles. Clearly DT_n has 4(n-1) extreme edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_3 , we have $g_{ev}(G) \ge 2(n$ -1). Let $S = \{u_1v_1, v_1w_1, u_2v_3, v_3w_2, u_3v_4, v_4w_3,..., u_{n-1}v_n, v_nw_{n-1}\}$ be a subset of the set of all extreme edges of G. It is easily observe that S is a minimum edge-to-vertex geodetic set of G, and |S| = 2(n-1). Therefore, $g_{ev}(G) \le 2(n$ -1). Hence $g_{ev}(G) = 2(n$ -1).



Double Triangular snake DT_n Figure 2.2

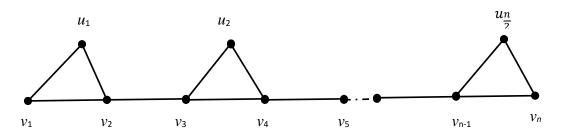
Remark 2.3. For the above two theorems, we can see that the edge-to-vertex geodetic number of T_n and DT_n depends on the number of triangles in the corresponding snake graph.

Theorem 2.4. For an alternate triangular snake $G = AT_n$,

$$g_{ev}(G) = \begin{cases} rac{n}{2} & \text{if the path } P_n \text{ is even} \\ \left[rac{n}{2}
ight] & \text{if the path } P_n \text{ is odd} \end{cases}$$

Proof. Case (i) n is even and $n \ge 4$.

Consider the path P_n : v_1 , v_2 , v_3 , v_4 ..., v_{n-1} , v_n where n is even. The alternate triangular snake AT_n , in Figure 2.3 is obtained by replacing the alternate edges of P_n by triangle C_3 . Clearly AT_n contains $\frac{n}{2}$ triangles in which u_1 , u_2 , u_3 , u_4 ..., $u_{n/2}$ are the new vértices. Note that AT_n has n extreme edges and $\frac{n}{2}-1$ cut edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_3 , and hence $g_{ev}(G) \geq \frac{n}{2}$. Also by Theorem 1.2, no cut edge of G which is not an end-edge of G belongs to every edge-to-vertex geodetic set of G. Let $S = \{u_1v_1, u_2v_4, u_3v_6, ..., u_{\frac{n}{2}v_n}\}$. Clearly S is a subset of the set of all extreme edges of $G = AT_n$. Since every vertices of AT_n are either in S or lies in a geodesic joining of some pair of edges of AT_n , we get S is an edge-to-vertex geodetic set of $G = AT_n$. Also it is seen that S is a minimum edge-to-vertex geodetic set of AT_n . Therefore $g_{ev}(G) = |S| = \frac{n}{2}$.

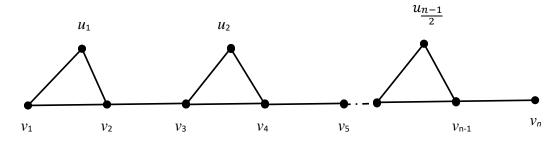


Alternate Triangular snake AT_n Figure 2.3

Case (ii) n is odd and $n \ge 3$.

In this case the alternate triangular snake AT_n in Figure 2.4 contains an end edge, $\frac{n-1}{2}$ triangles and $\frac{n-3}{2}$ cut edges. It is easily observe that AT_n has n extreme edges. By Theorem 1.3 & 1.1, Every edge-to-vertex geodetic set S of AT_n contains an end edge and at least $\frac{n-1}{2}$ extreme edges

and hence $g_{ev}(G) \ge \frac{n-1}{2} + 1 = \frac{n+1}{2}$. Consider the set $S = \{u_1v_1, u_2v_4, u_3v_6, ..., u_{\frac{n-1}{2}}v_{n-1}, v_{n-1}v_n\}$. Clearly S is a minimum edge-to-vertex geodetic set of AT_n . Hence $g_{ev}(G) = \frac{n+1}{2} = \left[\frac{n}{2}\right]$.



Alternate triangular snake AT_n Figure 2.4

REFERENCES

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addition-Wesley, Redwood City, CA, 1990.
- [2] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the Geodetic Number of a graph, *Scientia A2* (1988) 17–22.
- [3] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in Graphs, *Discussiones Mathematicae Graph Theory* 20(2000)129 138.
- [4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, *Networks* Vol.39 (1), (2002) 1-6.
- [5] F. Harary, Graph Theory, Addision- Wesley(1969).
- [6] J.John, A.Vijayan, S.Sujitha, The upper edge-to-vertex geodetic number of a graph, International Journal of Mathematics Archive 3(4), 2012, 1423-1428.